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The method of floating-zone melting is used to obtain high-quality single crystals or to remove impurities from a 

crystal. A liquid zone is formed in a cylindrical sample by a heater and is kept between the solid parts of the specimen by the 

surface tension of the melt. The temperature gradient at the free surface of the liquid phase changes the surface tension and 

this in turn causes thermocapillary convection of the melt. Vigorous studies are under way on mathematical problems that model 

floating-zone melting. Hydrodynamic, thermal and diffusion processes in the sample are considered separately, for the most 

part. 

Numerical methods make it possible to analyze the solutions according to the characteristic parameters of the problem, 

the size of the samples, the thermal parameters of the heaters, etc. Nulnerical analysis, therefore, provides the necessary 

material for optimization of the process conditions. The objective of [1-3] was to ascertain how the size of the molten zone 

depends on the power of the heat source. The convection of the melt for a given temperature distribution on the lateral surface 

of the sample was studied in [4, 5], In [4] the front was assumed to be fiat and given and in [5] the process was considered 

with the crystallization front in a position not known beforehand. 

In this paper we study the effect of thermocapillary convection of the melt under weightlessness on the position and 

shape of the front under real boundary conditions on the lateral surface of the sample. Only the temperature distribution on 

the inner surface of the heater is usually given by the experimental data and so the mathematical model for calculating the heat 

and mass transfer has nonlinear boundary conditions of the third kind on the lateral surface (Fig. 1, where 1 is the heater, 2 

is a gap, and 3 is the sample). The solution is assumed to be symmetric about the median plane of the molten zone, which 

is based on the results of [3, 4] as well as the proximity of the free surface of the melt to the cylindrical surface, which is true 

if the heat source is no wider than one diameter of the sample. Anisyutin [3] showed that with this condition the curvature of 

the free surface of the melt has very little effect on the shape of the crystallization front. 

1, Formulation and Method of Solution of the Problem. In the cylindrical region {(r, z): 0 _< r _< 1, 0 _< z _< B} 

(r and z are dimensionless coordinates, related to the radius R 1 of the sample, B is half the dimensionless length of the sample) 

we solve the stationary equation 

AU+ Pr V.(VU) = O. (1.1) 

Here U is the reduced temperature, related to the real temperature T by 

IX,/• T > T,, 
U= ( T / T , -  1)/ct, o~= [ 1, T ~  T,; 

where T,  is the crystallization temperature; Pr = v/X is the Prandtl number; and V is the vorticity. Then the position of the 

crystallization front is determined by the level line U = 0. The temperature distribution is easily found if the distribution of 
U is obtained. 

The boundary conditions are: 

at the symmetry axes 
OU/Orlr=o = OU/Oz[z~o = 0; (1.2) 
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(T 1 is the given temperature); at the lateral surface 

U =  T y T ,  - 1 (1.3) 

ou/onl,=, = -Q~ 1(1 + a u ) ' / a  - q/a}, (1.4) 

where Q = RlcrT.3/x L is a dimensionless quantity; e is the blackness (depends on the temperature); a is the Stefan-Boltzmann 

constant; and q is heat flux supplied. Figure 2 shows the distribution of q, calculated from the temperature distribution in the 

heater, obtained from the experimental data. The formula for calculating the heat flux (we ignore the contribution of reflected 

fluxes to the resultant flux) has the form [6] 

L 

h2_T~_ 
q (z) = oe2Rt f (h 2 + (z - s)2) 2 

- L  

ds .  

Here e 2 and T 2 are the blackness and the temperature distribution at the heater wall; and h is the gap between the surface of 

the sample and that of the heater. 

Equation (1.1) with boundary conditions (1.2)-(1.4) was solved by the method of finite elements, with the region 

divided into eight-node isoparametric elements [7]. 

The vorticity components are the solution of the following problem: V --- 0 for T < T. .  For T > T.  in the region 

0 _< r _< 1, 0 _< z < f(r) (z = f(r) is the position of the crystallization front) we solve the system of equations 

I d~p 1 O V  d v  Ou 
U .~. - - - - - -  U ~_ -- - -  (D .~  - -  - -  - -  

r Oz  ' r a r  ' Or d z  

(u, v are the vorticity components, r is the stream function, o~ is the nonzero current vector component), 

with the boundary conditions 

U~+Vo---[ - -r=oP + r ~ + o ~  2 �9  
0% ~ O~ O2, 
or2 r Or + --Oz 2 = r 

~ l =0, 
o T ~  T , R  1 . @U 

p v  

810 



a 

("/r 
7 i 

Fig. 3 Fig. 4 

The problem for the current on the solid wall, the interface, was completed by using the method of direct satisfaction 

of the boundary conditions, described in [8]: in this method the difference analog of the boundary condition of zero slip 

(a~b/an) b = 0 is satisfied in each transient layer directly, this being achieved by adjusting the stream function ~, near the 

boundary. 

The determining criteria in the problem are the Prandtl number, the vortex strength on the free surface, the 

dimensionless heat flux Ct = Qeq/c~, and the reduced temperature at the boundary z = B. 

The equations of hydrodynamics in the variables of the stream-vortex function are solved by the method of fixing. 

Stationary equations are replaced by nonstationary equations with the introduction of an iteration parameter analogous to time. 

A scheme of variable directions is then used [8]. The procedure described in [9] for determining the optimum parameters is 

used to optimize the calculations. In this procedure, the estimates of the maximum and minimum eigenvalues of the problems 

are adjusted on the basis the resuks from the previous steps. 

The problem (1.1)-(1.4) was solved together with the hydrodynamic equations as follows: We assumed that initially 

V = 0. The shape of the front (without convection) was determined and then the convection was calculated. The velocities so 

found were inserted into (1.1) and the new shape of the front was determined. The iteration process was continued until the 
shape of the front was fixed. 

2. Results of Calculation. The calculations were made with experimental data obtained with a sample of dimensions 

R 1 = 0.79 cm, L = 4.8 cm, h = 0.56 cm. The characteristics of the material correspond to germanium. The results of the 

calculations for T 1 = 925 and 949 K are shown in Figs. 3 and 4, respectively. Line 1 in Figs. 3a and 4a corresponds to the 

position of the front obtained in calculations without convection of the melt and line 2 corresponds to the position of the front 

with convection in the melt. Figures 3a and 4a also show the level lines of the stream function and Figs. 3b and 4b, the 

isotherms in the liquid phase. In Figs. 3a and 4a we see two vortices, in the same direction and separated by a small region 

of almost total quiescence. The vortices are localized along the free boundary of the melt, because of the boundary layer in 

this region and the absence of other mechanisms that could produce convection. The calculations suggest that thermocapillary 
convection substantially affects both the position and shape of the interface. On the whole, the front becomes less curved, but 
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a slight curvature near the lateral surface is caused by the local effect of thermocapillary convection. This convection may make 

the molten zone either wider or narrower, depending on the thermal conditions at the ends of the preform (Figs. 3a and 4a). 
On the basis of the data [7] and the information obtained about the effect of convection on floating-zone melting, we can say 
that by smoothing our the interface thermocapillary convection creates a stressed state in the growing solid phase that is more 
favorable for technical purposes. Regions in which the shear stress intensity exceeds the critical value and results in a 

substantially higher dislocation density may not form at all in this case or if they do such regions are localized along the lateral 
surface of the sample. The change in the width of the molten zone must be taken into account, of course, since a critical value 
that determines the region of stability for the process exists for this process parameter. 

We are indebted to V. V. Kuznetsov and O. M. Lavrent'eva for useful discussion of this work. 
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